ADDENDUM TO INVARIANT MEANS AND CONES WITH VECTOR INTERIORS

R. J. SILVERMAN AND TI YEN

1. Introduction. In the preceding paper [4] it is proved that the monotone extension property (Hahn-Banach extension property) of a pair $[\overline{G}, V]$, where \overline{G} is a semi-group and V is a boundedly complete vector lattice whose positive cone is sharp and has a vector interior point, is equivalent to the property that there exists an invariant mean definable on the space of bounded real valued functions on \overline{G} . It is the purpose of this paper to remove the interior point restriction on V.

The notations and definitions are the same as in [4] except the following slight modification. A semi-group \overline{G} has the monotone (Hahn-Banach) extension property if and only if $[\overline{G}, V]$ has the monotone (Hahn-Banach) extension property [2] for every boundedly complete vector lattice V whose positive cone is sharp.

- 2. Theorem. If \overline{G} is a semi-group the following statements are equivalent:
- (1) \overline{G} has the monotone extension property.
- (2) \overline{G} has the Hahn-Banach extension property.
- (3) \overline{G} has an invariant mean.

The equivalence of (1) and (2) has been proved in [2], that (1) and (2) imply (3) has been proved in [3]. One needs, therefore, only consider the proof that (3) implies (1).

Case A. V has reproducing positive cone K. Consider a collection [Y, X, C, f, G] associated with V and K as in [4, Definition 1], where G is a representation of \overline{G} on Y, and \overline{G} has an invariant mean. Let Γ denote the set of convex combinations of elements $g \in G$ and the identity, and let σ , τ , \cdots denote the elements of Γ . It is sufficient to consider the case that Y is spanned by X and $\{\sigma y_0 | \sigma \in \Gamma\}$, where y_0 is a fixed element in Y not in X. Since $(y_0+X) \cap C \neq \emptyset$, it may be assumed that $y_0>0$.

Let $A = \{x \in X \mid x \leq y_0\}$, $B = \{x \in X \mid x \geq y_0\}$. The sets A and B are not empty since $(y_0 + X) \cap C \neq \emptyset$ and $(-y_0 + X) \cap C \neq \emptyset$. Consider a fixed $b \in B$. Define $W = \{w \in V \mid w \geq f(b)\}$. If $w \in W$, then $w \geq f(b) \geq 0$. For each $w \in W$ define

$$\begin{split} V_w &= \big\{ v \in V \, \big| \, tw \ge \sup \, (v, \, -v) \text{ for some } t > 0 \big\}, \\ X_w &= \big\{ x \in X \, \big| \, f(x) \in V_w \big\}, \\ Y_w &= \text{ the subspace spanned by } X_w \text{ and } \big\{ \sigma y_0 \, \big| \, \sigma \in \Gamma \big\}. \end{split}$$

Received by the editors December 1, 1956.

Then

LEMMA. (1) V_w is a linear subspace of V.

- (2) X_w is a linear subspace of X.
- (3) The vector w is a vector interior point of the positive cone $K_w = K \cap V_w$ in V_w and K_w is sharp.
 - (4) V_w is a boundedly complete vector lattice.
- (5) For each $x \in X$, there exists $w \in W$ such that $x \in X_w$, hence $\bigcup_{w \in W} X_w = X$, $\bigcup_{w \in W} Y_w = Y$.
- (6) $gX_w \subset X_w$, $gC_w \subset C_w(C_w = C \cap Y_w)$, $w \in W$, $g \in G$, and $(y + X_w) \cap C_w \neq \emptyset$, $y \in Y_w$.
 - (7) If $x = s\sigma y_0 t\tau y_0 \in X$, where $s, t \ge 0$, then $x \in X_w$ for all $w \in W$.
- (8) The system W forms a directed system under \geq . If $w \geq w$,' then $X_w \supseteq X_{w'}$, $Y_w \supseteq Y_{w'}$, $C_w \supseteq C_{w'}$, $V_w \supseteq V_{w'}$, $K_w \supseteq K_{w'}$.
- (9) For every V_w , K_w and associated $[Y_w, X_w, C_w, f_w, G]$, where f_w is the restriction of f to X_w , there exists a monotone invariant extension $F_w: Y_w \to V_w$ of f_w .

Proof of lemma. Ad (1). If $v, v' \in V_w$, then there exist t, t' > 0 such that $tw > \sup(v, -v)$ and $t'w > \sup(v', -v')$. Then $(t+t')w > \sup(v+v', -v-v')$. Therefore $v+v' \in V_w$. Clearly, $-v \in V_w$ and $tv \in V_w$ for all t > 0.

- Ad (2). This follows from (1) and the linearity of f.
- Ad (3). That w is a vector interior point of K_w follows easily from the facts that w>0 and $tw\pm v\ge 0$ for some t>0. K_w is sharp because K is sharp.
- Ad (4). Let S be a subset of V_w bounded from above by v_1 in V_w . Then S has a least upper bound v in V. Take any vector v_2 in S. There exist $t_1, t_2 > 0$ such that $t_1w > \sup(v_1, -v_1)$ and $t_2w > \sup(v_2, -v_2)$. Then max $(t_1, t_2)w > \sup(v_1, -v_1, v_2, -v_2) \ge \sup(v, -v)$, since $v_1 \ge v$ and $-v_2 \ge -v$. Hence $v \in V_w$.
- Ad (5). For each $x \in X$, the vector $w = \sup (f(b), f(x), -f(x))$ is in W and $x \in X_w$.
- Ad (6). X_w and C_w are invariant under G because f and C are invariant under G. That every translate of X_w intersects C_w follows from the facts $y_0 \ge 0$, $b y_0 \ge 0$ and $b \in X_w$.
 - Ad (7). If $x = (s\sigma t\tau)y_0 \in X$ then $x \le s\sigma b$ and $-x \le t\tau b$. Hence

$$\sup (f(x), -f(x)) \le \max (s, t)f(b),$$

consequently, $x \in X_w$ for every $w \in W$.

Ad (8). This is clear.

Ad (9). Statement (9) follows from (1)-(8) and [4, Theorem 1].

Let $u_0 = \inf_{w' \in W} \sup_{w \ge w'} F_w(y_0)$. The vector u_0 exists since $0 \le F_w(y_0) \le f(b)$, $w \in W$. Define $F: Y \to V$ by

$$F(x + s\sigma y_0 - t\tau y_0) = f(x) + (s - t)u_0, \qquad s, t \ge 0.$$

The function F is well defined, that is, if $x + s\sigma y_0 - t\tau y_0 = x' + s'\sigma' y_0 - t'\tau' y_0$

then $f(x)+(s-t)u_0=f(x')+(s'-t')u_0$; or equivalently, if $(s\sigma-t\tau)y_0=x\in X$ then $f(x)=(s-t)u_0$. But in this case $x\in X_w$ for every w. Therefore $f(x)=F_w(s\sigma y_0-t\tau y_0)=(s-t)F_w(y_0)$ for all $w\in W$. If s-t=0 then $f(x)=0=(s-t)u_0$. If $s-t\neq 0$ then $F_w(y_0)=f(x)/(s-t)$ is independent of w. Hence $u_0=F_w(y_0)$. The function F is obviously invariant under G, and by definition distributive. To prove that F is monotone, let $x+s\sigma y_0-t\tau y_0>0$. Consider $w_0\in W$, where $x\in X_{w_0}$ and thus $x\in X_w$, $w\geq w_0$.

Case 1. s-t>0. For each

$$w \ge w' \ge w_0$$
, $F_w(x + s\sigma y_0 - t\tau y_0) = f(x) + (s - t)F_w(y_0) \ge 0$.

Since $(s-t)F_w(y_0) \ge 0$, $f(x)+(s-t)\sup_{w\ge w'} F_w(y_0) \ge 0$, and hence

$$f(x) + (s - t) \inf_{w' \ge w_0} \sup_{w \ge w'} F_w(y_0)$$

= $f(x) + (s - t)u_0 = F(x + s\sigma y_0 - t\tau y_0) \ge 0.$

Case 2. t-s>0. $x>t\tau y_0-s\sigma y_0$ and as in Case 1 $f(x) \ge (t-s)u_0$.

All that remains to complete the proof is to remove the restriction that V has reproducing cone.

Case B. The cone of V is not necessarily reproducing. Let V_1 be the subspace of V spanned by K, $X_1 = \{x \in X | f(x) \in V_1\}$, and let Y_1 be the subspace of Y spanned by X_1 and $\{\sigma y_0 | \sigma \in \Gamma\}$ —assuming again that Y is spanned by X and $\{\sigma y_0 | \sigma \in \Gamma\}$ and that $y_0 > 0$. The subsets A, B of X are contained in X_1 for $B \ge 0$, $B - A \ge 0$ and $A \subset B - (B - A)$. If $x \ge s\sigma y_0 - t\tau y_0$, $x \in X$, then $x \ge -t\tau b$ and $x = (x + t\tau b) - t\tau b \in X_1$. Consequently $C \subset Y_1$. The collection $[Y_1, X_1, C, f_1, G]$ together with V_1 and K satisfies the conditions of Case A, where f_1 is the restriction of f on X_1 . Therefore there is a monotone invariant extension $F_1: Y_1 \rightarrow V_1$ of f_1 . Define $F: Y \rightarrow V$ by $F(x + s\sigma y_0 - t\tau y_0) = f(x) + F_1(s\sigma y_0 - t\tau y_0)$. It is easy to show that F is well defined and, hence, is a desired extension of f.

As an immediate corollary is a generalization of a theorem of Kreĭn and Rutman [1, Theorem 3.1].

COROLLARY. Let Y be an ordered linear space whose positive cone C has a vector interior point y_0 . Let G be a semi-group of operators on Y such that $g(C) \subset C$ and $gy_0 = \lambda_0 y_0$, $g \in G$, where $\lambda_0 > 0$. Then if G has an invariant mean, there is a positive distributive functional F on Y with $F(gy) = \lambda_0 F(y)$, $g \in G$.

Proof. Let \overline{G} be the set of operators $\{\bar{g} = g/\lambda_{\sigma} | g \in G\}$. Since $\lambda_{\sigma\sigma'} = \lambda_{\sigma}\lambda_{\sigma'}$, \overline{G} is a homomorphic image of G and y_0 is a fixed point of \overline{G} . Let X be the one-dimensional subspace spanned by y_0 . Since y_0 is a vector interior point $(y+X) \cap C \neq \emptyset$ for every $y \in Y$. Hence the function $f: X \rightarrow$ real numbers defined by $f(y_0) = 1$ can be extended to a monotone function F invariant under \overline{G} . Thus $F(gy) = \lambda_{\sigma} F(\bar{g}y) = \lambda_{\sigma} F(y)$, $y \in Y$.

That this corollary is a generalization of [1, Theorem 3.1] is assured by [1, Lemma 1.1].

REFERENCES

- 1. M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Translations, no. 26, 1950.
- 2. R. J. Silverman, *Invariant linear function*, Trans. Amer. Math. Soc. vol. 81 (1956) pp. 411-424.
- 3. ——, Means on semi-groups and the Hahn-Banach extension property, Trans. Amer. Math. Soc. vol. 83 (1956) pp. 222-237.
- 4. ——, Invariant means and cones with vector interiors, Trans. Amer. Math. Soc. vol. 88 (1958) pp. 75-79.

Illinois Institute of Technology, Chicago, Ill.